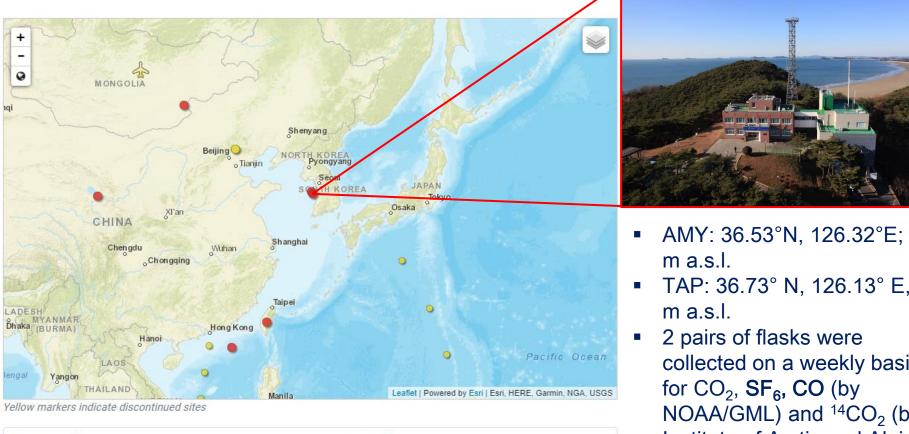

#### <sup>14</sup>C observations of atmospheric $CO_2$ at Anmyeondo GAW station, Korea: Implications for fossil fuel $CO_2$ and emission ratios

<u>Haeyoung Lee<sup>1</sup></u>, Edward J. Dlugokencky<sup>2</sup>, Jocelyn C Turnbull<sup>3,4</sup>, John B Miller<sup>2</sup>, Sepyo Lee<sup>1</sup>, Scott J. Lehman<sup>5,3</sup>, Gabrielle Petron<sup>2,4</sup>, Jeong-Sik Lim<sup>6,7</sup>, Gang-Woong Lee<sup>8</sup>

<sup>1</sup>National Institute of Meteorological Sciences, Jeju, 63568, Republic of Korea
<sup>2</sup>NOAA, Global Monitoring Laboratory, Boulder, Colorado, USA
<sup>3</sup>National Isotope Center, GNS Science, Lower Hutt, New Zealand
<sup>4</sup>CIRES, University of Colorado, Boulder, Colorado, USA
<sup>5</sup>INSTAAR, University of Colorado, Boulder, Colorado, USA
<sup>6</sup>Korea Research Institute of Standard and Science, Daejeon, 34113, Republic of Korea
<sup>7</sup>University of Science and Technology, Daejeon, 34113, Republic of Korea
<sup>8</sup>Atmospheric Chemistry Laboratory, Hankuk University of Foreign Studies, Gyeonggi-do, 17035, Republic of Korea



### 1. Radiocarbon, the good tracer of fossil fuel CO<sub>2</sub>




- <sup>14</sup>C (~1 part per trillion) produced in very small amounts in the upper atmosphere by cosmic rays.
- <sup>14</sup>C is radioactive and decays slowly with a half-life of 5 700 years, resulting in a small but measurable
   <sup>14</sup>C content in atmospheric CO<sub>2</sub> and in plant materials formed from CO<sub>2</sub>.
- Fossil fuels were formed from plant material millions of years ago, hence any <sup>14</sup>C present when the plants were alive has since decayed during their stay in the Earth's crust.
- <sup>14</sup>C content of atmospheric CO<sub>2</sub> have declined, as the fossil fuel CO<sub>2</sub> emitted into the atmosphere has no <sup>14</sup>C.



### 2. Sampling site and method





Surface Flasks ▲ In Situ Tall Tower

🔆 Surface In Situ

Airborne Flasks

In Situ Observatory

NOAA CCGG network map: esrl.noaa.gov/gmd/dv/site/index.php?program=ccgg

- AMY: 36.53°N, 126.32°E; 46
- TAP: 36.73° N, 126.13° E, 20
- collected on a weekly basis NOAA/GML) and  ${}^{14}CO_2$  (by Institute of Arctic and Alpine Research, INSTAAR) from 2014 to 2016 with 70 samples.



#### 2. Data analysis: Calculation of C<sub>ff</sub> and C<sub>bio</sub>



$$C_{\rm obs} = C_{\rm bg} + C_{\rm ff} + C_{\rm other}$$

$$\Delta_{\rm obs} C_{\rm obs} = \Delta_{\rm bg} C_{\rm bg} + \Delta_{\rm ff} C_{\rm ff} + \Delta_{\rm other} C_{\rm other}$$
$$C_{\rm ff} = \frac{C_{\rm bg}(\Delta_{\rm obs} - \Delta_{\rm bg})}{(\Delta_{\rm ff} + \Delta_{\rm bg})} + \frac{C_{\rm other}(\Delta_{\rm other} - \Delta_{\rm bg})}{\Delta_{\rm ff} - \Delta_{\rm bg}}$$

 $\Delta^{14}$ C ≈[(<sup>14</sup>C/C)sample/(<sup>14</sup>C/C)standard - 1] X 1000‰  $\Delta_{ff}$  = - 1000‰

- (1) Nuclear power
- (2) Ocean flux
- (3) Photosynthetic contribution
- (4) Heterotrophic respiration

-0.2±0.1 µmol mol<sup>-1</sup> during winter -0.5±0.2 µmol mol<sup>-1</sup> during summer *Turnbull et al., 2006* 

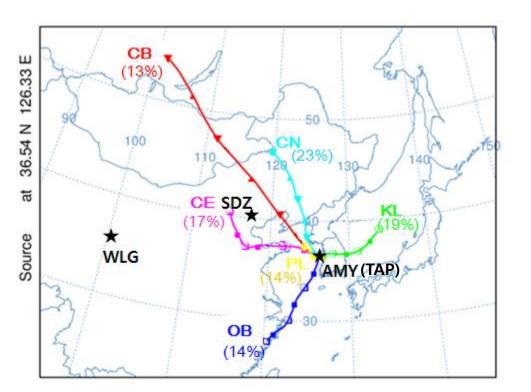
\*bg derived from Niwot Ridge (NWR) \* $C_{bio} = C_{obs} - C_{bg}$ 



#### 3. Data analysis: The ratio of $\Delta x$ to C<sub>ff</sub>



- $\Delta x = x_{obs} x_{bg}$  for SF<sub>6</sub> and CO
- To obtain the correlation coefficient (r) between gases and C<sub>ff</sub>
- To compare the emission ratio (R<sub>gas</sub>) with bottom-up inventory using RMA analysis which is known for a relatively robust method of calculating the slope of two variables.

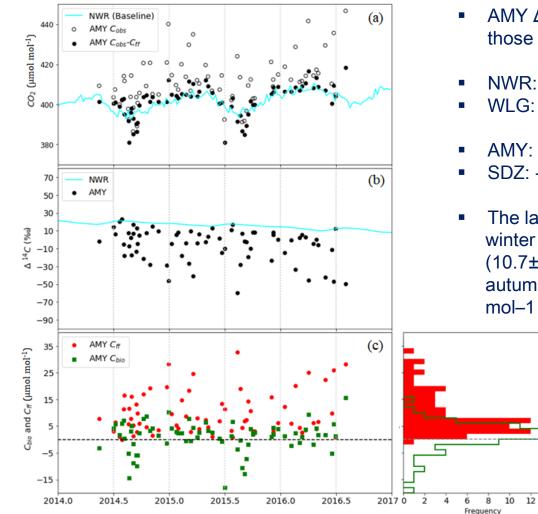

$$\boldsymbol{R}_{gas} = \sqrt{\frac{\sum \Delta x^2 - (\sum \Delta x)^2 / n}{\sum C_{ff}^2 - (\sum C_{ff})^2 / n}} \qquad \boldsymbol{r} = \sqrt{\frac{(\sum \Delta x C_{ff} - \frac{\sum \Delta x \sum C_{ff}}{n})^2}{(\sum \Delta x^2 - \frac{(\sum \Delta x)^2}{n}) \times (\sum C_{ff}^2 - \frac{(\sum C_{ff})^2}{n})}}$$

$$U = \sqrt{\frac{\sum (\Delta x - \Delta x')^2 / n}{\sum C_{\rm ff}^2 - (\sum C_{\rm ff})^2 / n}}$$

Here,  $\Delta x' = R_{\text{gas}} \times (C_{\text{ff}} - \overline{C_{\text{ff}}}) + \overline{\Delta x}$ 

#### 3. Data analysis: HYSPLIT






- HYSPLIT trajectories were run using Unified Model-Global Data Assimilation and Prediction System (UM-GDAPS) weather data at 25 km by 25 km horizontal resolution.
  - CB: Continental Baseline CN: Northeast China CE: central Eastern China OB: Ocean Baseline KL: Korea Local PL: Polluted Local 23%
- To more clearly identify samples, we removed the data when wind speed was less than 3m/s with assumption that those samples could be affected by local pollution.

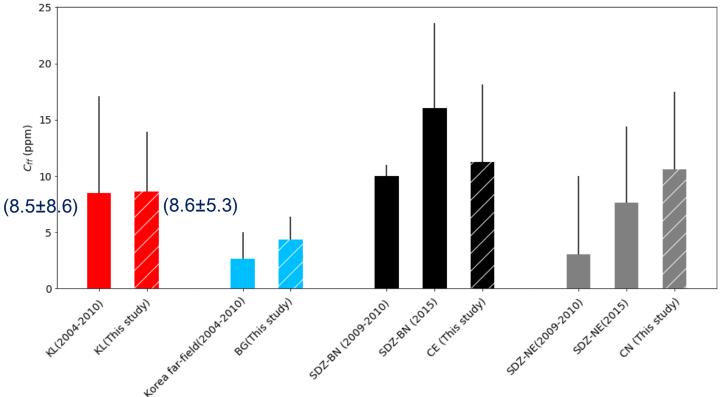
FIF

## 4. Observed $\Delta^{14}CO_2$ at AMY





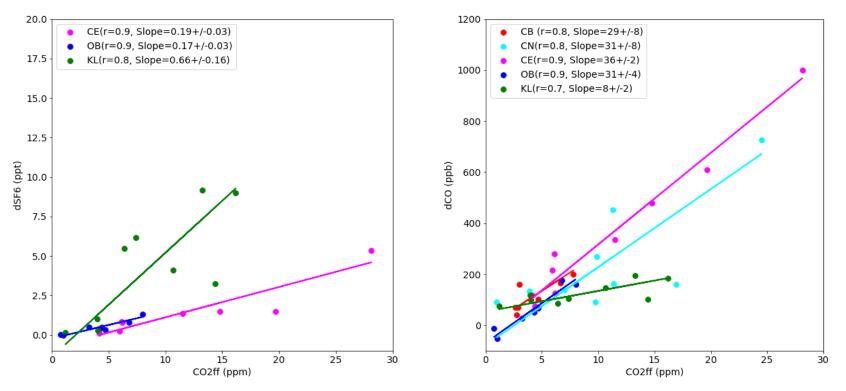
- AMY Δ<sup>14</sup>CO<sub>2</sub> values are almost always lower than those observed at NWR (of course).
- NWR: 16.6±3‰ (10 to 21.2 ‰, this study)


14

FTIFT

- WLG: 17.1±6.8 ‰ in 2015 (Niu et al., 2016)
- AMY: -6.2±18.8‰ (-59.5 to 23.1‰, this study)
- SDZ: -6.8±21.1 ‰ (-53.0 to 32.6‰, Niu et al., 2016)
- The largest C<sub>ff</sub>: winter (DJF, (11.3±7.6), n=14) > summer (JJA, (10.7±9.2), n=11) > spring (MAM, (8.6±8.0), n=22) > autumn (SON, (7.6±5.6), n=17) with a unit of µmol mol–1.
  - Only positive contributions of C<sub>bio</sub>

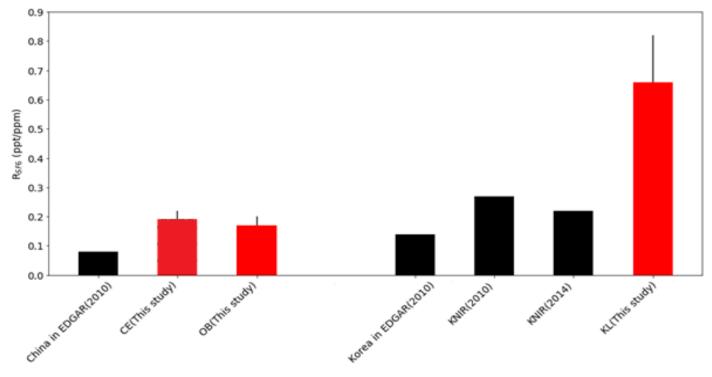
summer ((4.6±4.0), n=14) > autumn ((4.1±2.5), n=9) > spring ((3.8±2.6), n=13) > winter 250 ((3.4±2.5), n=11)


# 5. C<sub>ff</sub> comparison between Korea Local and Asian Continent



- C<sub>ff</sub> is highest in the order CE > CN > KL > CB > OB
- 2.6±2.4 (Korea far-field 2004 to 2010, Turnbull et al., 2011)  $\rightarrow$  4.3±2.1 ppm (Baseline, this study)
- 10±1 (Beijing and North China Plain, SDZ-BN, Turnbull et al., 2011) → 16±7.6 (2015, Niu et al., 2016) → 11.2 ±8.3 (CE, this study)
- 3±7 (northeast China, SDZ-NE, Turnbull et al., 2011) → 7.6±6.8 (2015, Niu et al., 2016) → 10.6±6.9 (CN, This study)

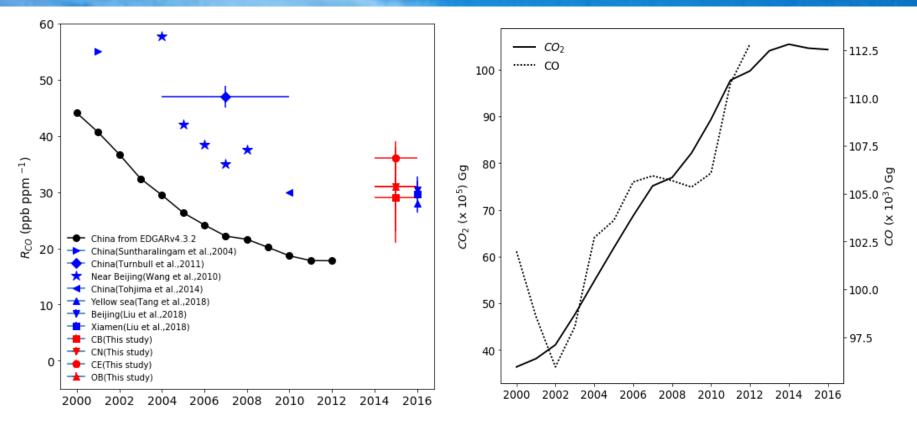
 $\Box \Box$ 





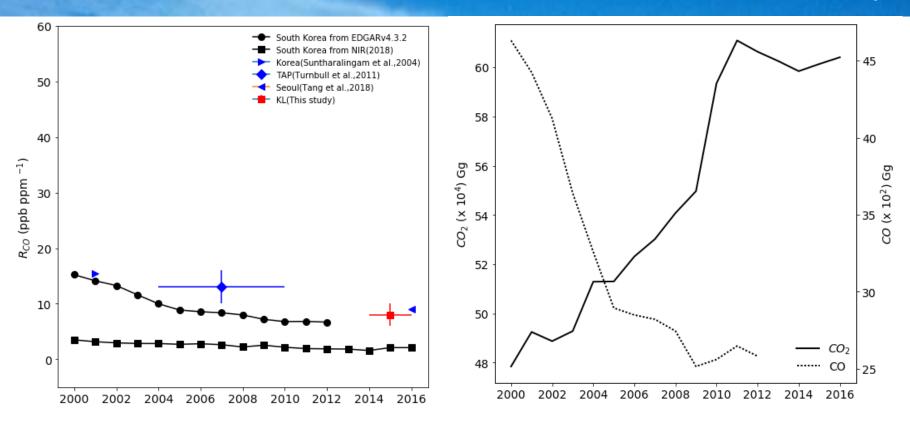

- The correlations of CO enhancements (△CO) with C<sub>ff</sub> were strong (r > 0.7) in all sectors except PL, while SF<sub>6</sub> enhancements (△SF<sub>6</sub>) correlated strongly with Cff (r > 0.8) for CE and OB in outflow from the Asian Continent and KL.
- KL, CE and OB showed strong correlations (r > 0.8). Those three sectors are also larger SF<sub>6</sub> sources compared to other regions, according to SF<sub>6</sub> emission estimates for Asia (Fang et al., 2014).
- CO from KL and PL is lower than from outflow from the Asian continent, except for the OB sector, indicating that high CO can be a tracer of outflow from the Asian continent

### 7. Comparison of emission ratio: SF<sub>6</sub>






- R<sub>SF6</sub> is different between South Korea and outflow from the Asian continent
- Here, the ratio was at (0.19±0.03) and (0.17±0.03) pmol µmol-1 for CE and OB respectively. For KL, it was (0.66±0.16) pmol µmol-1 indicating much larger ratios than in outflow from the Asian continent
- Further, observed R<sub>SF6</sub> is 2 to 3 times greater for all air masses than predicted from bottom-up inventories based on national scale roughly


FTIFT

#### 7. Comparison of emission ratio: CO for China



- CO to C<sub>ff</sub> emission ratios (R<sub>CO</sub>) derived from both observations and inventories for China decreased.
- R<sub>CO</sub> is (29±8), (31±8), (36±2), and (31±4) nmol µmol-1 for CB, CN, CE and OB, respectively
- Atmosphere-based R<sub>CO</sub> values calculated by this study are (1.8±0.2) times greater (with CB, CN, CE and OB) than in the inventory

# 7. Comparison of emission ratio: CO for South Korea



- CO to C<sub>ff</sub> emission ratios (R<sub>CO</sub>) derived from both observations and inventories for Korea decreased, as well.
- In South Korea, atmosphere-based R<sub>CO</sub> values calculated by this study are 1.2 times (with KL) greater than inventory.



Better NIM

- 1. Observed  $\Delta^{14}CO_2$  values at AMY ranged from -59.5 to 23.1‰ (a mean value of 6.2±18.8‰ (1 $\sigma$ )) during the study period, almost always lower than those observed at NWR. This reflects the strong imprint of fossil fuel-CO<sub>2</sub> emissions recorded in AMY air samples.
- 2. Calculated  $C_{\rm ff}$  using  $\Delta^{14}CO_2$  at AMY ranges between -0.05 and 32.7 µmol mol-1 with an average of (9.7±7.8) µmol mol-1 (1 $\sigma$ ); this average is twice as high as in the 2004 to 2010 TAP samples (mean (4.4±5.7) µmol mol-1) (Turnbull et al., 2011).
- 3. Because  $\triangle CO$  and  $\triangle SF_6$  agreed well with Cff, but showed different slopes for Korea and the Asian continent, those  $R_{gas}$  values can be indicators of air mass origin and those gases can be proxies for  $C_{ff}$
- 4. Atmosphere-based R<sub>gas</sub> values are greater than bottom-up inventories. For CO, our values are 1.2 times and (1.8±0.2) times greater than in inventory values for South Korea and China, respectively. This discrepancy may arise from several sources including the absence of atmospheric chemical CO production such as oxidation of CH<sub>4</sub> and non-methane VOCs.
- 5. We stress that because  $C_{bio}$  contributes substantially to  $\Delta CO_2$ , even in winter,  $\Delta^{14}C$ -based  $C_{ff}$  (and not  $\Delta CO_2$ ) is required for accurate calculation of both  $R_{CO}$  and  $R_{SF6}$

